COT 6405 Introduction to Theory of Algorithms

Topic 12. Hash tables

Data Structures

- We focus on data structures in this part
 - stack, linked list, queue, tree, pointer, object, ...
- In particular, structures for dynamic sets
 - Elements have a key and satellite data
 - Dynamic sets support queries such as:
 - Search(S, k), Minimum(S), Maximum(S), Successor(S, k), Predecessor(S, k)
 - They may also support modifying operations like:
 - Insert(S, k), Delete(S, k)

Dictionary

• Dictionary

- is a Dynamic-set data structure for storing items indexed using keys
- Supports operations: Insert, Search, and Delete
- Hash Tables:

Effective way of implementing dictionaries

Types of Dictionaries

- A dictionary consists of keyelement pairs in which the key is used to look up the element
- Ordered Dictionary: Elements stored in sorted order by key
- Unordered Dictionary: Elements not stored in sorted order

Example	Key	Element
English Dictionary	Word	Definition
Student Records	Student ID	Rest of record: Name,
Symbol Table in Compiler	Variable Name	Variable's Address in Memory
Lottery Tickets	Ticket Number	Name & Phone Number

Dictionary as a Function

• Given a key, return an element

Key Element (domain: (range: type of the keys) type of the elements)

- A dictionary is a partial function. Why?
 - A function which is not defined for some of its domain. (key is not defined)
 - 'kk' \rightarrow not defined in English dictionary

Direct-address Tables

- Direct-address Tables are ordinary arrays
- Facilitate direct addressing
 - Element whose key is k is obtained by indexing into the k-th position of the array, e.g., A[k]
- Applicable when we can afford to allocate an array with one position for every possible key

 i.e. when the universe of keys U is small.
- Dictionary operations can be implemented to take O(1) time.

Direct-address Tables

Direct-Address-Search(T, k) return T[k]

Time Analysis: O(1)

Space Analysis: ?

Direct-Address-Delete(T, x) T[x.key] NIL

Direct-address Tables

Direct-Address-Search(T, k) return T[k]

Time Analysis: O(1)

Space Analysis: O(|U|)

Direct-Address-Delete(T, x) T[x.key] NIL

Dynamic set by Direct-address

Figure 11.1 Implementing a dynamic set by a direct-address table *T*. Each key in the universe $U = \{0, 1, ..., 9\}$ corresponds to an index in the table. The set $K = \{2, 3, 5, 8\}$ of actual keys determines the slots in the table that contain pointers to elements. The other slots, heavily shaded, contain NIL.

The drawback of Direct-addressing

- Notation:
 - U is the Universe of all possible keys.
 - K is the set of keys actually stored in the dictionary.
 - |K| = n
- When U is very large, |K| << |U|

Arrays are not practical

Hash Table

- We use a table of size proportional to |K|: hash tables
 - Define hash functions that map keys to slots of the hash table.
 - However, we lose the direct-addressing ability.

Hash function

- Hash function h: Mapping from Universe U to the slots of a hash table T[0..m–1].
- $h: U \rightarrow \{0, 1, \dots, m-1\}$

- With arrays, key k maps to slot A[k].

- With hash tables, key k maps or "hashes" to slot
 T[h(k)]
 - h(k) is the hash value of key k
- Example of Hash Function
 - -h(k) = return(k mod m)
 - where k is the key, and m is the size of the table

Issues with Hashing?

- Multiple keys can hash to the same slot: collisions
 - Design hash functions such that collisions are minimized
 - But avoiding collisions is sometimes impossible
 - Must have collision-resolution techniques

Hash Table with Collision

- The hash table is an array of linked lists
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Notes:

- As before, elements would be associated with the keys
- We're using the hash function h(k) = k mod m

- The hash table is an array of linked lists
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Notes:

- As before, elements would be associated with the keys
- We're using the hash function h(k) = k mod m

- The hash table is an array of linked lists
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Notes:

- As before, elements would be associated with the keys
- We're using the hash function h(k) = k mod m

- The hash table is an array of linked lists
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Notes:

- As before, elements would be associated with the keys
- We're using the hash function h(k) = k mod m

- The hash table is an array of linked lists
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Notes:

- As before, elements would be associated with the keys
- We're using the hash function h(k) = k mod m

Chaining Algorithms

Chained-Hash-Insert(T, x) insert x at the head of list T[h(x.key)]

Chained-Hash-Search(T, k) search for an element with key k in list T[h(k)]

Chained-Hash-Delete(T, x) delete x from the list T[h(x.key)]

Analysis of hashing with chaining

- m = hash table size
- n = number of elements in hash table
- load factor $\alpha = n/m$: average number of keys per slot
- Assume each key is equally likely to be hashed into any slot: using simple uniform hashing (SUH)
- What is the worst-case search time?
 - Unsuccessful Search \rightarrow we find none
 - Successful Search \rightarrow we find one

Expected time of an unsuccessful search

Theorem: In a hash table in which collisions are resolved by chaining, an unsuccessful search takes expected time $\Theta(1+\alpha)$ under SUH.

Proof:

- Under the assumption of SUH, any key is equally likely to hash to any of the m slots.
- The expected time to search unsuccessfully for a key k is the expected time to search to the end of list T[h(k)], which is exactly α.
- Consider compute the hash as O(1)
- Thus, the total time required is $\Theta(1+\alpha)$

Expected time of a successful search

Theorem: In a hash table in which collisions are resolved by chaining, a successful search takes time $\Theta(1+\alpha)$, on the average under SUH.

Proof: The number of elements examined during a successful search for an element x is one more than the number of elements that appear before x in x's list. (why?)

 To find the expected number of elements examined, we take the average, over the n elements x in the table, of 1 plus the expected number of elements added to x's list after x was added to the list.

- Let x_i denote the i-th element into the table, for i =1 to n, and let k_i= x_i.key
- Define X_{ij} = I{ h(k_i)=h(k_j) }. Under SUH, we have Pr{ h(k_i)=h(k_j) } = 1/m = E[X_{ij}] (why?)

$$\Theta(2 + \frac{\alpha}{2} - \frac{\alpha}{2n}) = \Theta(1 + \alpha).$$
W

Collision Resolution Scheme 2: Open addressing

- No list and no element stored outside the table
 - If a collision occurs, try alternate cells until empty cell is found.
 - Pro: No pointers!
- Advantage: avoid pointers, potentially yield fewer collisions and faster retrieval
 - Extra memory freed from storing pointers → more hash slots → less collisions!

Common Probing Sequence

- Assume uniform hashing
- Collision Resolution Strategies for open address
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
- We try cells h(k,0), h(k,1), h(k,2), ..., h(k, m-1)
 - where h(k,i) = (h'(k) + f(i)) mod m, with f(0) = 0
 - Function f is the collision resolution strategy
 - Function h' is the original hash function.

Probe sequence

- -Given function h() $h: U \times \{0, 1, \lfloor, m-1\} \rightarrow \{0, 1, \lfloor, m-1\}$
- For every k, the probe sequence

 $\langle h(k,0), h(k,1), \sqcup, h(k,m-1) \rangle$

is a permutation of $\langle 0, 1, \lfloor, m-1 \rangle$

- A sequence of m slots
- How about deletion?
- Deletion from an open-address hash table is difficult
- We can NOT simply mark one cell is empty!
- Thus chaining is more common when keys must be deleted.

Open addressing insertion

Hash-Insert (T, k) i **←** 0 repeat $j \leftarrow h(k, i)$ **if** T[j] == NIL **then** T[j] **←** k return j else $i \leftarrow i + 1$ **until** i = merror "hash table overflow"

Open addressing search

```
Hash-Search(T, k)
      i ← 0
      repeat
             j \leftarrow h(k, i)
             if T[ j ] == k
                then return j
             i ← i + 1
      until T[ j ] = NIL or i = m
      return NIL
```

Linear Probing

- Function f is linear, e.g., f(i) = i
- h(k,i) = (h'(k) + i) mod m
 - Offsets: 0, 1, 2, ..., m-1
 - Only probe m slots
- With H = h'(k), we try the following cells with wraparound:

H, H + 1, H + 2, H + 3, ...

- What does the table look like after the following insertions? (assume h'(k) = k mod m)
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Linear Probing

- Function f is linear, e.g., f(i) = i
- h(k,i) = (h'(k) + i) mod m
 - Offsets i: 0, 1, 2, ..., m-1
 - Only probe m slots
- With H = h'(k), we try the following cells with wraparound:

H, H + 1, H + 2, H + 3, ...

- What does the table look like after the following insertions? (assume h'(k) = k mod m)
- Insert Keys: **0**, **1**, **4**, **9**, **16**, **25**, **36**, **49**, **64**, **81**

)	0
1	1
2	49
3	81
4	4
5	25
5	16
7	36
3	64
9	9

Issue: Primary Clustering

- Linear Probing is easy to implement, but it suffers from the problem of primary clustering
 - i.e., the tendency to create long sequences of filled slots
- If two keys have the same initial probe position, then their probe sequences are the same.
- As more elements are inserted into the hash table, the probing sequences get longer
 - Consequently, the average search time increases
 - O(1) to O(n)

Collision Resolution Comparison

	Advantages?	Disadvantages?
Chaining	O(1) insertion, O(1+I) deletion	pointers
Linear Probing	no pointers	primary clustering

Quadratic Probing

- Function f is quadratic: $f(i) = i^2$
- h(k, i) = (h'(k) + i²) mod m
 Offsets: 0, 1, 4, 9, ...
- With H = h'(k), we try the following cells with wraparound:
- H, H + 1^2 , H + 2^2 , H + 3^2 ...
 - A sequence of m slots
- Insert Keys: 10, 23, 14, 9, 16, 25, 36, 44, 33

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Quadratic Probing

- Function f is quadratic: $f(i) = i^2$
- h(k, i) = (h'(k) + i²) mod m
 Offsets: 0, 1, 4, 9, ...
- With H = h'(k), we try the following cells with wraparound:
- H, H + 1^2 , H + 2^2 , H + 3^2 ...
 - A sequence of m slots
- Insert Keys: 10, 23, 14, 9, 16, 25, 36, 44, 33

)	10	
1		
2	33	
3	23	
1	14	
5	25	
5	16	
7	36	
3	44	
9	9	

Secondary Clustering

- Quadratic Probing suffers from a milder form of clustering called secondary clustering
- As with linear probing, if two keys have the same initial probe position, then their probe sequences are the same

- since h(k₁,0) = h(k₂,0) implies h(k₁,i) = h(k₂,i).

• Therefore, clustering can occur around the probe sequences.

Double Hashing

- If a collision occurs when inserting, apply a second auxiliary hash function, h₂(k)
 - We then probe at a distance: $h_2(k)$, 2 * $h_2(k)$, 3 * $h_2(k)$, etc., until find empty position.
- So, f(i) = i * h₂(k), and we have two auxiliary functions:

 $- h(k, i) = (h_1(k) + i * h_2(k)) \mod m$

 With H = h₁(k), we try the following cells in sequence with wraparound:

 $-H, H+1 * h_2(k), H+2 * h_2(k), H+3 * h_2(k)$

Figure 11.5 Insertion by double hashing. Here we have a hash table of size 13 with $h_1(k) = k \mod 13$ and $h_2(k) = 1 + (k \mod 11)$. Since $14 \equiv 1 \pmod{13}$ and $14 \equiv 3 \pmod{11}$, the key 14 is inserted into empty slot 9, after slots 1 and 5 are examined and found to be occupied.

Double Hashing

- $h(k_1,0) = h(k_2,0), h(k_1,i) \neq h(k_2,i),$
 - $-h(k_1,i) = (h_1(k_1) + i^*h_2(k_1)) \mod m$
 - $-h(k_2,i) = (h_1(k_2) + i*h_2(k_2)) \mod m$
 - Even if the initial probe of k₁ is equal to that of k₂, their following probes are random and not the same.
- It is one of the best methods available for open addressing, because the produced permutations are close to randomly chosen permutations. Doesn't suffer from primary or secondary clustering

Analysis of open-addressing hashing

- m = hash table size
- n = number of elements in hash table
- load factor $\alpha = n/m$: average number of keys per slot
- Theorem: Given an open-address hash table with load factor α = n/m < 1, the expected number of probes in an unsuccessful search is at most 1/(1-α), assuming uniform hashing.
 - unsuccessful search → every probe but the last accesses an occupied slot that does not contain the desired key, and the last slot probed is empty.

Proof

- Define random variable X to be the number of probes made in an unsuccessful search.
- Define A_i: the event that there is an i-th probe and it is to an occupied slot.
- Then, the event $\{X \ge i\}$ is the intersection of $\{X \ge i\} = A_1 \cap A_2 \cap \dots \cap A_{i-1}$ $\Pr\{X \ge i\} = \Pr\{A_1 \cap A_2 \cap \dots \cap A_{i-1}\}$ $= \Pr\{A_1\} \cdot \Pr\{A_2 \mid A_1\} \cdot \Pr\{A_3 \mid A_1 \cap A_2\} \cdot \cdot \Pr\{A_{i-1} \mid A_1 \cap A_2 \cap \dots \cap A_{i-2}\}$ $\Pr\{A_1\} = \frac{n}{n}$

- Given that the first i-1 probes were to occupied slots
- n-(i-1) occupied elements in the hash table haven't been probed and there are a total of m-(i-1) slots to be explored
- The probability that there is a i-th probe to an occupied slot is (n-(i-1))/(m-(i-1))

 $\Pr[X \ge i] = \frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-i+2}{m-i+2} \qquad n < m, \text{ (n-i)/(m-i)} \le n/m$ $\int (\frac{n}{m})^{i-1} = \alpha^{i-1}$ $E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1-\alpha}$ 45

Easy to estimate

- Load factor α = 0.5
- We need 1/(1-0.5) = 2 probes on average for unsuccessful search
- Load factor α = 0.9
- We need 1/(1-0.9) = 10 probes on average for unsuccessful search

Corollary

Corollary: Inserting an element into an openaddressing hash table with load factor α requires at most 1/(1- α) probes on average, assuming uniform hashing.

- Proof
 - We first find the empty slot via an unsuccessful search
 - Then insert the key
 - The expected number of probes is at most $1/(1-\alpha)$

 Theorem: Given an open-address hash table with load factor α<1, the expected number of probes in a successful search is at most

$$\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

- assuming uniform hashing
- each key in the table is equally likely to be searched for.

- Suppose we search for a key k.
 - If k is the (i+1)-st key inserted into the hash table, at the time when inserted k, i slots in the hash table had been already occupied,
 - The corresponding load factor α_i is i/m
 - According to the Corollary, Inserting k into the hash table with load factor α_i requires at most 1/(1- α_i) probes on average,
 - A search for a key k follows the same probe sequence as was followed when k was inserted. Thus, the expected number of probes made in a search for k is at most $1/(1-\alpha_i) = 1/(1-i/m) = m/(m-i)$

Averaging over all n keys in the hash table gives us the average number of probes in a successful search

$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i}$$
$$= \frac{1}{\alpha} \sum_{k=m-n+1}^{m} \frac{1}{k} \le \frac{1}{\alpha} \int_{m-n}^{m} \frac{dx}{x} = \frac{1}{\alpha} \ln \frac{m}{m-n} = \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

Collision Resolution Comparison: Expected Number of Probes in Searches load factor $\alpha = n/m$

	Unsuccessful Search	Successful Search
Chaining	1+α	1 + α/2 - α/(2n)
	(1 + average number of elements in chain)	 (1 + average number before element in chain)
Open Addressing	1 / (1 – α)	$\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$
(assuming uniform hashing)		