COT 6405 Introduction to Theory of Algorithms

Topic 12. Hash tables

Data Structures

- We focus on data structures in this part
- stack, linked list, queue, tree, pointer, object, ...
- In particular, structures for dynamic sets
- Elements have a key and satellite data
- Dynamic sets support queries such as:
- Search(S, k), Minimum(S), Maximum(S), Successor(S, k), Predecessor(S, k)
- They may also support modifying operations like:
- Insert(S, k), Delete(S, k)

Dictionary

- Dictionary
- is a Dynamic-set data structure for storing items indexed using keys
- Supports operations: Insert, Search, and Delete
- Hash Tables:
- Effective way of implementing dictionaries

Types of Dictionaries

- A dictionary consists of keyelement pairs in which the key is used to look up the element
- Ordered Dictionary: Elements stored in sorted order by key
- Unordered Dictionary: Elements not stored in sorted order

Example	Key	Element
English Dictionary	Word	Definition
Student Records	Student ID	Rest of record: Name,..
Symbol Table in Compiler	Variable	Variable's Address in Memory
Lottery Tickets	Ticket Number	 Phone Number

Dictionary as a Function

- Given a key, return an element

$$
\text { Key } \longrightarrow \text { Element }
$$

(domain:
type of the keys)
(range:
type of the elements)

- A dictionary is a partial function. Why?
- A function which is not defined for some of its domain. (key is not defined)
$-{ }^{\prime} k k^{\prime} \rightarrow$ not defined in English dictionary

Direct-address Tables

- Direct-address Tables are ordinary arrays
- Facilitate direct addressing
- Element whose key is k is obtained by indexing into the k-th position of the array, e.g., A[k]
- Applicable when we can afford to allocate an array with one position for every possible key - i.e. when the universe of keys U is small.
- Dictionary operations can be implemented to take $O(1)$ time.

Direct-address Tables

Direct-Address-Search(T, k) return T[k]

Direct-Address-Insert(T, x)

$$
T[x . k e y] \longleftarrow x
$$

Time Analysis: $\mathrm{O}(1)$

Space Analysis: ?
Direct-Address-Delete(T, x) T[x.key] < NIL

Direct-address Tables

Direct-Address-Search(T, k) return T[k]

Direct-Address-Insert(T, x) T[x.key] ©

Direct-Address-Delete(T, x) T[x.key] < NIL

Space Analysis: $\mathrm{O}(|\mathrm{U}|)$
Time Analysis: $\mathrm{O}(1)$

Dynamic set by Direct-address

Figure 11.1 Implementing a dynamic set by a direct-address table T. Each key in the universe $U=\{0,1, \ldots, 9\}$ corresponds to an index in the table. The set $K=\{2,3,5,8\}$ of actual keys determines the slots in the table that contain pointers to elements. The other slots, heavily shaded, contain NIL.

The drawback of Direct-addressing

- Notation:
- U is the Universe of all possible keys.
$-K$ is the set of keys actually stored in the dictionary.
$-|K|=n$
- When U is very large, $|K| \ll|U|$
- Arrays are not practical

Hash Table

- We use a table of size proportional to $|K|$: hash tables
- Define hash functions that map keys to slots of the hash table.
- However, we lose the direct-addressing ability.

Hash function

- Hash function h: Mapping from Universe U to the slots of a hash table T[0..m-1].
- $\mathrm{h}: \mathrm{U} \rightarrow\{0,1, \ldots, \mathrm{~m}-1\}$
- With arrays, key k maps to slot A[k].
- With hash tables, key k maps or "hashes" to slot T[$\mathrm{h}(\mathrm{k})$]
- $\mathrm{h}(\mathrm{k})$ is the hash value of key k
- Example of Hash Function
$-h(k)=$ return (k mod m)
- where k is the key, and m is the size of the table

Issues with Hashing?

- Multiple keys can hash to the same slot: collisions
- Design hash functions such that collisions are minimized
- But avoiding collisions is sometimes impossible
- Must have collision-resolution techniques

Hash Table with Collision

Collision Resolution Scheme 1: Chaining

- The hash table is an array of linked lists
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Notes:

- As before, elements would be associated with the keys
- We're using the hash function $h(k)=k \bmod m$
- m=10

Collision Resolution Scheme 1: Chaining

- The hash table is an array of linked lists
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Notes:

- As before, elements would be associated with the keys
- We're using the hash function $h(k)=k \bmod m$
- $\mathrm{m}=10$

Collision Resolution Scheme 1: Chaining

- The hash table is an array of linked lists
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Notes:

- As before, elements would be associated with the keys
- We're using the hash function $h(k)=k \bmod m$
- m=10

Collision Resolution Scheme 1: Chaining

- The hash table is an array of linked lists
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Notes:

- As before, elements would be associated with the keys
- We're using the hash function $h(k)=k \bmod m$
- $\mathrm{m}=10$

Collision Resolution Scheme 1: Chaining

- The hash table is an array of linked lists
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Notes:

- As before, elements would be associated with the keys
- We're using the hash function $h(k)=k \bmod m$
- $\mathrm{m}=10$

Chaining Algorithms

Chained-Hash-Insert(T, x) insert x at the head of list T[h(x.key)]

Chained-Hash-Search(T, k)
search for an element with key k in list $\mathrm{T}[\mathrm{h}(\mathrm{k})$]

Chained-Hash-Delete(T, x)
delete x from the list $\mathrm{T}[\mathrm{h}$ (x.key)]

Analysis of hashing with chaining

- $m=$ hash table size
- $\mathrm{n}=$ number of elements in hash table
- load factor $\alpha=\mathrm{n} / \mathrm{m}$: average number of keys per slot
- Assume each key is equally likely to be hashed into any slot: using simple uniform hashing (SUH)
- What is the worst-case search time?
- Unsuccessful Search \rightarrow we find none
- Successful Search $\quad \rightarrow$ we find one

Expected time of an unsuccessful search

Theorem: In a hash table in which collisions are resolved by chaining, an unsuccessful search takes expected time $\Theta(1+\alpha)$ under SUH.

Proof:

- Under the assumption of SUH, any key is equally likely to hash to any of the m slots.
- The expected time to search unsuccessfully for a key k is the expected time to search to the end of list $\mathrm{T}[\mathrm{h}(\mathrm{k})]$, which is exactly α.
- Consider compute the hash as O(1)
- Thus, the total time required is $\Theta(1+\alpha)$

Expected time of a successful search

Theorem: In a hash table in which collisions are resolved by chaining, a successful search takes time $\Theta(1+\alpha)$, on the average under SUH.

Proof: The number of elements examined during a successful search for an element x is one more than the number of elements that appear before x in x 's list. (why?)

Proof (cont'd)

- To find the expected number of elements examined, we take the average, over the n elements x in the table, of 1 plus the expected number of elements added to x's list after x was added to the list.

Proof (cont'd)

- Let x_{i} denote the i-th element into the table, for $i=1$ to n, and let $k_{i}=x_{i}$. key
- Define $X_{i j}=I\left\{h\left(k_{i}\right)=h\left(k_{j}\right)\right\}$. Under SUH, we have $\operatorname{Pr}\left\{\mathrm{h}\left(\mathrm{k}_{\mathrm{i}}\right)=\mathrm{h}\left(\mathrm{k}_{\mathrm{j}}\right)\right\}=1 / \mathrm{m}=\mathrm{E}\left[\mathrm{X}_{\mathrm{ij}}\right]$ (why?)

Proof (cont'd)

$$
\begin{aligned}
& \mathrm{E}\left[\frac{1}{\mathrm{n}} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} X_{i j}\right)\right]=\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} \frac{1}{m}\right)=1+\frac{1}{m n} \sum_{i=1}^{n}(n-i) \\
& =1+\frac{1}{m n}\left(n^{2}-\frac{n(n+1)}{2}\right)=1+\frac{n-1}{2 m}=1+\frac{\alpha}{2}-\frac{\alpha}{2 n}
\end{aligned}
$$

$$
\Theta\left(2+\frac{\alpha}{2}-\frac{\alpha}{2 n}\right)=\Theta(1+\alpha)
$$

Collision Resolution Scheme 2:

Open addressing

- No list and no element stored outside the table
- If a collision occurs, try alternate cells until empty cell is found.
- Pro: No pointers!
- Advantage: avoid pointers, potentially yield fewer collisions and faster retrieval
- Extra memory freed from storing pointers \rightarrow more hash slots \rightarrow less collisions!

Common Probing Sequence

- Assume uniform hashing
- Collision Resolution Strategies for open address
- Linear Probing
- Quadratic Probing
- Double Hashing
- We try cells $h(k, 0), h(k, 1), h(k, 2), \ldots, h(k, m-1)$
- where $h(k, i)=\left(h^{\prime}(k)+f(i)\right) \bmod m$, with $f(0)=0$
- Function f is the collision resolution strategy
- Function h^{\prime} is the original hash function.

Probe sequence

- Given function h() $\mathrm{h}: U \times\{0,1, \quad, m-1\} \rightarrow\{0,1, \quad, m-1\}$
- For every k, the probe sequence

$$
\langle h(k, 0), h(k, 1), \quad, h(k, m-1)\rangle
$$

is a permutation of $\langle 0,1, \quad, m-1\rangle$

- A sequence of m slots
- How about deletion?
- Deletion from an open-address hash table is difficult
- We can NOT simply mark one cell is empty!
- Thus chaining is more common when keys must be deleted.

Open addressing insertion

Hash-Insert (T, k)
$\mathrm{i} \leftarrow 0$
repeat
$\mathrm{j} \leftarrow \mathrm{h}(\mathrm{k}, \mathrm{i})$
if $\mathrm{T}[\mathrm{j}]==\mathrm{NIL}$
then $T[j] \leftarrow k$
return j
else $\mathrm{i} \leqslant \mathrm{i}+1$
until $\mathrm{i}=\mathrm{m}$
error "hash table overflow"

Open addressing search

Hash-Search(T, k)
$\mathrm{i} \leftarrow 0$
repeat
$j \leftarrow h(k, i)$
if $T[j]==k$ then return j
$\mathrm{i}<\mathrm{i}+1$
until T[j$]=$ NIL or $\mathrm{i}=\mathrm{m}$
return NIL

Linear Probing

- Function f is linear, e.g., $f(i)=i$
- $h(k, i)=\left(h^{\prime}(k)+i\right) \bmod m$
- Offsets: 0, 1, 2, ..., m-1
- Only probe m slots
- With $\mathrm{H}=\mathrm{h}^{\prime}(\mathrm{k})$, we try the following cells with wraparound:

$$
H, H+1, H+2, H+3, \ldots
$$

- What does the table look like after the following insertions? (assume $h^{\prime}(k)=k \bmod$ m)
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Linear Probing

- Function f is linear, e.g., $f(i)=i$
- $h(k, i)=\left(h^{\prime}(k)+i\right) \bmod m$
- Offsets i: 0, 1, 2, ..., m-1
- Only probe m slots
- With $\mathrm{H}=\mathrm{h}^{\prime}(\mathrm{k})$, we try the following cells with wraparound:

$$
H, H+1, H+2, H+3, \ldots
$$

- What does the table look like after the following insertions? (assume $h^{\prime}(k)=k$ mod m)
- Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

Issue: Primary Clustering

- Linear Probing is easy to implement, but it suffers from the problem of primary clustering
- i.e., the tendency to create long sequences of filled slots
- If two keys have the same initial probe position, then their probe sequences are the same.
- As more elements are inserted into the hash table, the probing sequences get longer
- Consequently, the average search time increases
$-O(1)$ to $O(n)$

Collision Resolution Comparison

	Advantages?	Disadvantages?
Chaining	$\mathrm{O}(1)$ insertion, $\mathrm{O}(1+\mathrm{Z})$ deletion	pointers
Linear Probing	no pointers	primary clustering

Quadratic Probing

- Function f is quadratic: $f(i)=i^{2}$
- $h(k, i)=\left(h^{\prime}(k)+i^{2}\right) \bmod m$
- Offsets: 0, 1, 4, $9, \ldots$
- With $\mathrm{H}=\mathrm{h}^{\prime}(\mathrm{k})$, we try the following cells with wraparound:
- $\mathrm{H}, \mathrm{H}+1^{2}, \mathrm{H}+2^{2}, \mathrm{H}+3^{2} \ldots$
- A sequence of m slots
- Insert Keys: 10, 23, 14, 9, 16, 25, 36, 44, 33

Quadratic Probing

- Function f is quadratic: $f(i)=i^{2}$
- $h(k, i)=\left(h^{\prime}(k)+i^{2}\right) \bmod m$
- Offsets: 0, 1, 4, $9, \ldots$
- With $\mathrm{H}=\mathrm{h}^{\prime}(\mathrm{k})$, we try the following cells with wraparound:
- $\mathrm{H}, \mathrm{H}+1^{2}, \mathrm{H}+2^{2}, \mathrm{H}+3^{2} \ldots$
- A sequence of m slots
- Insert Keys: 10, 23, 14, 9, 16, 25, 36, 44, 33

Secondary Clustering

- Quadratic Probing suffers from a milder form of clustering called secondary clustering
- As with linear probing, if two keys have the same initial probe position, then their probe sequences are the same
- since $h\left(k_{1}, 0\right)=h\left(k_{2}, 0\right)$ implies $h\left(k_{1}, i\right)=h\left(k_{2}, i\right)$.
- Therefore, clustering can occur around the probe sequences.

Double Hashing

- If a collision occurs when inserting, apply a second auxiliary hash function, $h_{2}(k)$
- We then probe at a distance: $h_{2}(k), 2 * h_{2}(k), 3 * h_{2}(k)$, etc., until find empty position.
- So, $f(i)=i^{*} h_{2}(k)$, and we have two auxiliary functions:
$-h(k, i)=\left(h_{1}(k)+i^{*} h_{2}(k)\right) \bmod m$
- With $H=h_{1}(k)$, we try the following cells in sequence with wraparound:
$-H, H+1{ }^{*} h_{2}(k), H+2 * h_{2}(k), H+3 * h_{2}(k)$

- $h(k, i)=\left(h_{1}(k)+i * h_{2}(k)\right) \bmod m$
- $\mathrm{h}(14,0)=(14 \bmod 13+0) \bmod 13=1$
- $h(14,1)=(14 \bmod 13+$

1 * $(1+14 \bmod 11)) \bmod 13=5$

- $h(14,2)=(14 \bmod 13+$

2 * $(1+14 \bmod 11)) \bmod 13=9$

Figure 11.5 Insertion by double hashing. Here we have a hash table of size 13 with $h_{1}(k)=$ $k \bmod 13$ and $h_{2}(k)=1+(k \bmod 11)$. Since $14 \equiv 1(\bmod 13)$ and $14 \equiv 3(\bmod 11)$, the key 14 is inserted into empty slot 9 , after slots 1 and 5 are examined and found to be occupied.

Double Hashing

- $h\left(k_{1}, 0\right)=h\left(k_{2}, 0\right), h\left(k_{1}, i\right) \neq h\left(k_{2}, i\right)$,
$-h\left(k_{1}, i\right)=\left(h_{1}\left(k_{1}\right)+i^{*} h_{2}\left(k_{1}\right)\right) \bmod m$
$-h\left(k_{2}, i\right)=\left(h_{1}\left(k_{2}\right)+i^{*} h_{2}\left(k_{2}\right)\right) \bmod m$
- Even if the initial probe of k_{1} is equal to that of k_{2}, their following probes are random and not the same.
- It is one of the best methods available for open addressing, because the produced permutations are close to randomly chosen permutations. Doesn't suffer from primary or secondary clustering

Analysis of open-addressing hashing

- $m=$ hash table size
- $\mathrm{n}=$ number of elements in hash table
- load factor $\alpha=\mathrm{n} / \mathrm{m}$: average number of keys per slot
- Theorem: Given an open-address hash table with load factor $\alpha=\mathrm{n} / \mathrm{m}<1$, the expected number of probes in an unsuccessful search is at most 1/(1- α), assuming uniform hashing.
- unsuccessful search \rightarrow every probe but the last accesses an occupied slot that does not contain the desired key, and the last slot probed is empty.

Proof

- Define random variable X to be the number of probes made in an unsuccessful search.
- Define A_{i} : the event that there is an i-th probe and it is to an occupied slot.
- Then, the event $\{X \geq i\}$ is the intersection of

$$
\begin{gathered}
\{X \geq i\}=A_{1} \cap A_{2} \cap \cap A_{i-1} \\
\operatorname{Pr}\{X \geq i\}=\operatorname{Pr}\left\{A_{1} \cap A_{2} \cap \cap A_{i-1}\right\} \\
=\operatorname{Pr}\left\{A_{1}\right\} \cdot \operatorname{Pr}\left\{A_{2} \mid A_{1}\right\} \cdot \operatorname{Pr}\left\{A_{3} \mid A_{1} \cap A_{2}\right\} \cdot \\
\cdot \cdot \operatorname{Pr}\left\{A_{i-1} \mid A_{1} \cap A_{2} \cap \cap A_{i-2}\right\} \\
\operatorname{Pr}\left\{A_{1}\right\}=\frac{n}{m}
\end{gathered}
$$

Proof (Cont'd)

- Given that the first i-1 probes were to occupied slots
- n-(i-1) occupied elements in the hash table haven't been probed and there are a total of $m-(i-1)$ slots to be explored
- The probability that there is a i-th probe to an occupied slot is $(n-(i-1)) /(m-(i-1))$

$$
\begin{aligned}
& \operatorname{Pr}[X \geq i]=\frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-i+2}{m-i+2} \quad \begin{array}{l}
\mathrm{n}<\mathrm{m},(\mathrm{n}-\mathrm{i}) /(\mathrm{m}-\mathrm{i}) \leq \mathrm{n} / \mathrm{m} \\
\quad \leq\left(\frac{n}{m}\right)^{i-1}=\alpha^{i-1}
\end{array} \\
& E[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha}
\end{aligned}
$$

Easy to estimate

- Load factor $\alpha=0.5$
- We need $1 /(1-0.5)=2$ probes on average for unsuccessful search
- Load factor $\alpha=0.9$
- We need $1 /(1-0.9)=10$ probes on average for unsuccessful search

Corollary

Corollary: Inserting an element into an openaddressing hash table with load factor α requires at most $1 /(1-\alpha)$ probes on average, assuming uniform hashing.

- Proof
- We first find the empty slot via an unsuccessful search
- Then insert the key
- The expected number of probes is at most $1 /(1-\alpha)$

Proof (cont'd)

- Theorem: Given an open-address hash table with load factor $\alpha<1$, the expected number of probes in a successful search is at most

$$
\frac{1}{\alpha} \ln \frac{1}{1-\alpha}
$$

- assuming uniform hashing
- each key in the table is equally likely to be searched for.

Proof (Cont'd)

- Suppose we search for a key k.
- If k is the ($i+1$)-st key inserted into the hash table, at the time when inserted k, i slots in the hash table had been already occupied,
- The corresponding load factor α_{i} is i / m
- According to the Corollary, Inserting k into the hash table with load factor α_{i} requires at most $1 /\left(1-\alpha_{i}\right)$ probes on average,
- A search for a key k follows the same probe sequence as was followed when k was inserted. Thus, the expected number of probes made in a search for k is at most $1 /(1-$ $\left.\alpha_{i}\right)=1 /(1-i / m)=m /(m-i)$

Proof (Cont'd)

Averaging over all n keys in the hash table gives us the average number of probes in a successful search

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i}=\frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i} \\
& =\frac{1}{\alpha} \sum_{k=m-n+1}^{m} \frac{1}{k} \leq \frac{1}{\alpha} \int_{m-n}^{m} \frac{d x}{x}=\frac{1}{\alpha} \ln \frac{m}{m-n}=\frac{1}{\alpha} \ln \frac{1}{1-\alpha}
\end{aligned}
$$

Collision Resolution Comparison:

 Expected Number of Probes in Searchesload factor $\alpha=n / m$

	Unsuccessful Search	Successful Search
Chaining	$1+\alpha$ $(1+$ average number of elements in chain)	$1+\alpha / 2-\alpha /(2 n)$ $(1+$ average number before element in chain $)$
Open Addressing (assuming uniform hashing)	$1 /(1-\alpha)$	$\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$

